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Control perspective on synchronization and the Takens-Aeyels-Sauer reconstruction theorem
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A method, based on ideas from control theory, is described for the synchronization of discrete time trans-
mitter and receiver dynamics. Conceptually, the methodology consists of constructing observer-receiver dy-
namics that exploit the drive signal and past values of the drive signal at each time instant. In this way, the
method can be viewed as a dynamic reconstruction mechaf&ifi63-651X99)04904-1

PACS numbgs): 05.45-a, 07.05.Dz, 02.10.Jf

I. INTRODUCTION Xo(k+ 1) =T ,(xq(K) Xa(K)) )
~ Following Pecora and CarrdlL], a great deal of interest such that Eq(4) holds, whatever initial conditions Eqgl),

in the synchronization of two coupled systems has arisen?), and(5) have. Although Eq(5) supports the idea of using
This research is partly motivated by its possible use in securghe copy[Eq. (3)] for Eq. (2), there are many systems for

communications, cf. Ref2]. Often, as in Ref[1], a drive  \yhich Eq.(4) will not be met, no matter hot, in Eq. (5) is
and response, or transmitter and receiver, viewpoint is asposen.

sumed. In a discrete-time context, this typically allows for a = thare is. however. a natural generalization of E8)
description of the transmitter as ardimensional dynamical that consists of exploiting the drive signad,(k) and

system, X1(k—1),...x1(k—N) at each time instark. Thus, as re-
xq(K+1)=F,(x;(K),Xo(K)), 1) ceiver dynamics, we use the following system:

Xo(K+ 1) = f (X, (K),Xo(K)), ) X(k+1)=f(X(Kk),x3(k), ... X1(k=N)). (6)
wherex,(-) andx,(-) are vectors of dimensions andl,  HereX(-) is n dimensional, and(-,-) andN are such that
with m+1=n andx(k) = (x;(k),x»(k)). Givenx,(-) as the _ _
drive signal, the receiver dynamics are taken as a copy of Eq. k“m [x(k) =%(k)[=0. Y
) -

Fo(k+ 1) = fo(x1(K) Xo(K)). 3) The receivefEq. (6)] acts as an “extended” observer for the

system of equation$l) and (2) in that past values of the

Synchronization of the transmitter and receiver now corredrive signalx;(-) are also used. It turns out that under fairly
sponds to the asymptotic matching of E4®. and (3), that weak conditions receiver dynami€gq. (6)] exist such that

is, the transmittefEqgs.(1) and(2)] and Eq.(6) synchronize; see
Sec. Il. Actually, the necessary conditions involved are

lim [|x,(k) —%(K)|| = 0. (4)  closely related toglobal observability cf. Ref. [5] or the

k— o0 Takens-Aeyels-Sauer reconstruction theordsee Refs.

[6—9,3). However, a crucial difference in our work with the
Clearly Eq.(4) will not be satisfied in general and, in fact, reconstruction theorem is that E@) forms adynamic*in-
conditions onf; andf, that guarantee this condition are only version” for the statex(-), whereas in the reconstruction
partially known, cf. Ref[3]. For that reason several methods theorem one computes the state at some time instant by in-
for achieving synchronization of signals like,(-) and  verting the observability map, which determinegk) from
X,(-) have been proposed. In particular, we wish to recallx,(k),...x;(k—N). It is interesting to note that an alterna-
the (reduced observer viewpoint advocated in RdH], tive using look-up tables for this procedure was proposed in
which basically admits the construction of dynamics Ref.[10].
The proposed transmitter and receiver synchronization
using a receiver of forn6) can be demonstrated numerically
* Author to whom correspondence should be addressed. on several examples from the literature; see, e.g.,
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Refs.[11,17. In this paper, we will consider, among others,

the example from Refl11]. The organization of this paper is

as follows. In Sec. Il we present a design procedure for ob-

server dynamic$Eq. (6)], whereN=n—1. Section Il pre-

sents numerical simulations of some synchronization prob-

BRIEF REPORTS

lems where an observer presented in Sec. Il is used. The

paper ends with some concluding remarks.

Il. OBSERVER DESIGN

In this section, we focus on an observer design for non- z(k+1)=
linear, discrete-time, autonomous, single output systems of

the forms

x(k+1)=f(x(k)), y(k)=h(x(k)) ®)

fork=0,1,2 ..., wherex(-) is a vector of dimension and
y(-) is a scalar. Assuming that the Jacobian lofis

nonzero—which implies that a nontrivial signal from the
dynamics is transmitted—we can, at least locally, rewrite

Eqg. (8) in a form like Egs.(1) and (2), with y(k)=x;(k)

being one dimensional. Within the context of synchroniza-

tion, it is desired to reconstrucfasymptotically the
(n—1)-dimensionak,(-) on the basis of the sequencgk)
(k=1,2,...). Wewill do this using a suitably selected dy-

namics of form(6), which basically means that we treat the
synchronization problem as a sort of observer problem; cf,
Ref. [4]. Without loss of generality we can assume that

f(0)=0 andh(0)=0.
For Eq.(8) we define the so-calledbservability mapy
by

h(x)

hof (x)

P(X) = : 9

hof"~1(x)
wherehof (x):=h(f(x)), fl:=f, andfl:=fofi =1 System(8)

is calledstrongly locally observablaroundx=0 if the Jaco-
bian (9y/9x)(0) is invertible.

PRE 59
z3(k) :=s,(k),
Zy(k) :=s,(k) = fs(y(k—2),y(k—1),s:(k)),
z3(k) :=s3(k) = fs(y(k—1),51(k),S2(K)). 11
It then follows from Egs. (100 and (11) that z
=col(z;,2,,2z3) satisfies
00O 0
100|zk+|0 :
010 fs(y(k—=2),y(k=1),y(k))
y(k)=2z3(k) (12)

[where the first matrix isE and the second isb(y(k

=2),y(k=1).y(k))].
An observer of type how has the form

2(k+1)=EZ(k) + D (y(k—2),y(k—1),y(k))

do
+1 d1 [[y(K)=F(K) ],
a2
Y(k)=23(k), k=2, (13

whereqg, q1, andq, are still to be determined. Defining the
error signale:=2—z, we obtain the error dynamics

00 —qo
e(k+1)=[1 0 —a;|e(k), (14
01 —0>

where the matrix is represented @y The characteristic
polynomial pa(X) of A is given by pa(A\)=\3+q,\2
+0;MA+0g. Choosingqg, g4, andq, in such a way that all
eigenvalues ofA are located within the unit circle, the ob-
server errore(k) vanishes fork—, and condition(7) is
met. From this it follows that the dynami¢§3) initialized at
an arbitrary pointz(0) will asymptotically (even exponen-

We now sketch a procedure to derive two different typestially) match the transmitter dynamid42). Therefore, the

of observers for the strongly locally observable sysi@n
This procedure was proposed in Rgfs3,14], and represents
an extension of Ref$15,16|. For clarity of presentation, we
will restrict ourselves to the case in which= 3. Extensions
to other cases are straightforward.

Thus we consider a strongly locally observable systg@m
with n=3, and defines;(x):=hof'"1(x) (i=1, 2, and 3.
Since Eq. (8) is strongly locally accessible,s
=col(s;,s,,S3) forms a new set of coordinates for E@)
aroundx=0. In what follows, we will assume throughout
that s forms a new set of coordinategobally, i.e., ¢ in Eq.
(9) is a global diffeomorphism oR". It is straightforwardly
checked that in these new coordinates the syg@ntakes
the form

S(K)
s3(k)
fs(s(k))

wheref(s):=hof3(¢1(s)). Next, define

s(k+1)= o Y(K)=s,(k), (10

receiver dynamic$13) which is fed with the buffered trans-
mitted signal (y(k—2),y(k—1),y(k)), synchronizes with
Eqg. (12).

The derivation of arpbserver of type Ztarts from the
observation that the solutions of E@l2) satisfy z;(k)
=27,(k)=0 for k=2. This suggests that one should consider
an observer of the form

N1Z;(k)
N22Z5(K) ,
A3 (Y (k) —y(k))

(15

2(k+1)=D(y(k—2),y(k=1),y(k))+

Y(k)=23(k), k=2.

Again defining the error signa:=2z—z, we now obtain the
error dynamics

N, O O
e(k+1)=| 0 Xp 0 |e(k) (16)
0 0 s
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for k=2. The convergence rate of théh component can T T T ' T
now be assigned by;, without affecting the other compo- 0 P
nents. As was the case with observer 1, here we again have T ey —
that the receiver dynamidd5), which is fed with the buff-
ered transmitted signaly(k—2),y(k—1),y(k)), synchro- -50 |
nizes with Eq.(12).

Comparing both observer types, we see that the conver-
gence rate of each of the components of observer type 2 can 100} i
be assigned independently, while this is not the case for ob-
server type 1. Thus observer type 2 will give a better tran-
sient behavior than observer type 1. On the other hand, how- S50 b P
ever, observer type 1 with properly chosgn q;, andq, is
in general more robust tgneasuremennoise than observer . L ! !
type 2; cf. Refs[13,14]. o 2 4 6 8 10 12

IIl. EXAMPLES FIG. 1. Observer errors;(k) =%;(k) —x;(k) (i=1 and 2 for

. . system(17) and observer type fIEqQ. (13)].
As an example, consider the transmitter systems

drive signalx;(k), but only viax,(k). For this reason, the
X1(K+1)=u(1—- €)X (K)[1—X1(k)]+ exa(Kk), coupling parametee was increased up to 0.35 while the
second parametgr=3.7 was not changed. Fay(0)=0.2,
Xo(k+1)=pu(1-e)Xa(K[1-Xa(K) ]+ exy (k) (17)  x,(0)=0.4,%5(0)=0.6, andx;(0)=0.7,i=1, 2, and 3, and
. . . . eigenvalues of the observer error dynami¢s-0.5,i=1, 2,
presented in Ref.11]. Takingx,(k) as the drive signalmt 504 3(for observer type 1, this corresponds to the choices
=|=1), Badola, Tambe, and Kulkarni investigated the syn- o=—0.125,q,=0.75, andg,= — 1.5), the observer errors
chronizatio_n ofx,(k) and the receiver signak(k) of which applying observer types 1 and 2 are shown in Figs. 3 and 4.
the dynamics were taken as It can be seen thde;(k)| reaches very high valugsip to
_ 7500 with observer type)dduring the transient time. Never-
Xg(k+1)=u(1-e)xs(K)[1-xa(k) ]+ exs(k). (18 theless, after 20 iterations the maximum absolute observer
error is less than 0.007.

[In Ref. [11], x(K) is considered as the drive signal. Since The examples show the efficiency of observers taken as

the coupled system given by EQL?)_ls Symmetric, we can o .oy er dynamics in synchronization problems, especially
exchangexl.(k) andx,(k)]. Our aim s to apply an observgr when taking into consideration that synchronization of the
presented in Sec. Il as the receiver dynamics for transmittef s mitter system and observer is guaranteed if the system is
(17). With y(k) =x,(K), it is possible to design observers as gioha|ly observable. Moreover, the eigenvalues of the ob-
in Sec. Il in order to obtain the estimategk) andX,(k) for  gerver error dynamics, and consequently the convergence
the signalsx, (k) and x(k). The resulting observer equa- 516 are selectable. For synchronization as presented in Ref.
tions are omitted for reasons of space. For subsequent SIMPr1], one is neither able to guarantee synchronization nor

lations, the initial conditions«;(0)=0.2, x5(0)=0.4, and  gpje 1o influence the number of steps until synchronizations
X1(0)=X,(0)=0.7 and parameteys=3.7 ande=0.09 were  ,ccyrs.

used. Following Ref[11], x,(k) andxz(k) do not synchro-

nize for these parameters arg(0)=%,(0)=0.7, while the IV. CONCLUDING REMARKS

observers obtained here show satisfactory behavior. Exem- i )
plary simulations of the observer errors applying observer. W€ have presented a control perspective on synchroniza-
types 1 and 2 can be seen in Figs. 1 and 2Xfpr \,=0.5 tion of discrete-time transmitter systems. The methodology

(for observer type 1, this corresponds to the choiggs 1 ' , : , .

=0.25 andg;=—1). Both observers provide very good es- er(k) —

timations after 20 iterations with a maximum absolute ob- 0.8F ez(k) -om- ]

server error less than 0.002. As already mentioned in Sec. Il, i

observer type 2 shows smaller observer errors during tran- 06

sient time than observer type 1. 04 _

As a second example, we want to extend sys(&m to !

the third order transmitter system 0.2 1
X1(K+1)=pu(1—€)X1(K)[1—X1(K) ]+ exa(k), ot =
Xa(k+1)= (1= €)xa(K)[ 1= Xp(K) ]+ exa(k), 02 I

X3(k+1)=u(1-€)x3(K)[1—x3(k)]+exy(k), (19

4 6 8 10 12
with the drive signal/(k) =x;(k) (m=1,1=2). In this case, ’
observing the unknown signats(k) andxz(k) is more dif- FIG. 2. Observer errors;(k)=%;(k)—x;(k) (i=1 and 2 for
ficult becausexs(k) does not directly influence the measured system(17) and observer type PEq. (15)].
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FIG. 4. Observer errorg (k) =%;(k) —x;(k) (i=1, 2, and 3 for

FIG. 3. Observer errorg (k) =X%;(k) —x;(k) (i=1, 2, and 3for system(19) and observer type EEq. (15)].

system(19) and observer type fIEqQ. (13)].

trary to Ref.[11], our results are valid no matter how the
of designing an observer as the receiver system enables tidtial conditions are chosen.
exponential synchronization of the transmitter and receiver, The observer viewpoint on the synchronization problem
and does not require any condition on conditional Lyapunowhas also been advocated for continuous time syste®s
exponents, as is often the case when identical transmitter ariRief. [4]), but the scheme we used here in discrete time has
receiver systems are used. Essentially, the observer scheme direct analog in continuous time. An obvious way to pro-
that is used in this paper exploits the last 1 measurements ceed in continuous time, therefore, could exist ir(fast
of the drive signaly(k),y(k—1),...y(k—n+1) at each sampling of the continuous time transmitter and then the
time instantk, with n being the dimension of the transmitter design of a discrete-time observer as receiver. In that case
dynamics, and can be viewed as a dynamic mechanism fdhe synchronization error becomes small—depending on the
the (Takens-Aeyels-Sauereconstruction theorem, provided sampling time—but not identically zero. However, in many
the system satisfies a global observability condition. Conapplications this will not be a big problem.
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